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Classical Navier-Stokes equations

@ Incompressible NS equations

Oru+ (u-Vu+Vp—vAu=0
divu =0

@ Compressible NS equations without temperature

Orp + div(pu) =0
O(pu) + div(pu ® u) + Vp
—plAu — (A4 p)Vdivu =0

with p = p(p)

@ Generalization with non-constant viscosities
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A Free Boundary Problem in fluid mechanics

Orp + div(pu) =0
O(pu) + div(pu ® u) + Vp1 + Vpa
—plAu — (A + p)V(divu) =0

with
0<p<1

p> >0

p1 = Pl(P)
(1=p)p2=0

= compressible/incompressible system
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Remarks : py=0and u=A=0

Orp + div(pu) =0
O¢(pu) + div(pu @ u) + Vpr =0
(1-p)p2=0

@ A:0<p<1— pressureless Euler equations
e B:p=1— incompressible Euler equations

See F. Berthelin, F. Bouchut (2003-2012) :
Pressureless model from sticky particules system.
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Collective motions and congestion : A flock of sheep
Picture from L. Navoret PhD Thesis
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Singular limit

How to get the Free Boudary System from Comp. NS eq?
Collective motion system from singular PDEs

Idea : Play with singular pressure
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Singular limit

Previous works by Lions and Masmoudi

@ Approximate system

Orp + div(pu) =0
O¢(pu) + div(pu @ u) — pAu — (A + p)Vdivu + Vp,(p) =0

where
p+(p) = ap”
with a > 0 a fixed constant and v a parameter.

oY > o0 —

Orp + div(pu) =0

O(pu) + div(pu @ u) + Vr — pAu — (A + p)V(divu) =0
0<p<l1

>0

(I-p)m=0
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Singular limit

Pressure term coming from collective motion

@ New approximate system
Orp + div(pu) =0
Ot(pu) + div(pu ® u) — pAu — (A + p)Vdivu
+Vp:(p) =0
where
p(p) = ep”H(p) when 0 < p < 1 and + oo otherwise

with s|_i>r11‘17 H(s) = 4o0.
~ is fixed, € — 0 : Collective motion model?
See P. Degond, J. Hua, L. Navoret (2013) :

formal derivation and numerical schemes

_
P ==y
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Singular limit

Remark

@ we have p <1 thanks to the pressure term
— the pressure plays the role of a barrier

See B. Maury (2012)

@ See also E.Feireisl, H.Petzeltova, E.Rocca, G.Schimperna (2010)

— phase-field model for two-phase compressible fluids
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Singular limit

Energy estimates

d (/1 a L 2
E/o (2,0|U| + P )dx+/0 (1] Oxul"dx =0
® p(p) =ep"H(p) with H(s) = 1—s)

d/L (3elut o)) dx+/Lua 2dx = 0
dt J, \2 0 x

where M(p) = p/p ps) ds.

o S

ex:p=¢ — M =ceplog(1l—p)

— no a priori uniform bound on p
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Singular limit

How to get extra information ?

— p(p) € LILL uniformly

Sketch of proof

@ we test the momentum eq by ¢(t, x) t)/ (t,s)

/OTi/J(t) /OL p(p) (P - /oLpdy> dxdt = /OT/OL O:(pu)ddxdt
_ /OT/OL pu? O pdxdt + M/OT/OL O udy pdxdt

@ the energy estimates allows to control the r.h.s

@ we slip the L.h.s into two parts depending on the density
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Singular limit

= p(p) = 7 with 7 a positive measure.

= pp(p) = m with m; a positive measure.

o Can we pass to the limit in the system ?

@ Can we recover the constraint (p — 1)t =07
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Singular limit

Sketch of proof p = 5( , 1d case

@ using the strong convergence of the density

pT =T

@ to characterize the limit © we write

L0 L ) L ()l
(1-p)? (L—p)P=t ~ (1-p)’
— Ty —0 —T
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Singular limit

/)W

P=Eq conclusion

the limit (p, u, 7) satisfies

Orp+ Ox(pu) =0 in (0, T)x(0,L

Ot (pu) + Ox(pu?) + O — pud?u =0 in D'((0, T) x (
0<p<1 in(0,T)x(0,L

7>0 in M ((0,T) x

(1—p)r=0 inD'((0,T) x (O,

(0,1))

~
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Existence results

Singular pressure




Existence results

Existence of solutions, ¢ fixed

@ let &, u, A be fixed positive constants and let
(u°, %) € HY(0,L) x H*(0,L)  with 0< p®<1.
Then there exists a regular solution (u®, p®) such that
p° € L°°(0, T; H(0, L)) N HY(0, T; L2(0, L))

u® € L2(0, T; HE(0, L)) N L>=(0, T; L3(0, L))

uniformly with respect to € and there exist constants ¢ and C(¢) s.t.

0<c<p<C(e)< 1.

—> we pass to Lagrangian coordinates
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Existence results

Upper bound on the density

Orp — p?Oxu =0
Oru — pdx (p(’)xu) +e0xp2(p) =0

d M u2 pp2(s) M ,

M 2 M 2 M
i/ p <5xp> L uOxp dxﬂ-/ ph(p) X2 dX:/ p(Oxu)2dX
dT 0 2 P 14 JO P 0

== p<l1
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Perspectives

Perspectives

@ multi-d case

@ degenerate viscosities
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Perspectives

preuve T = T

L@T<u—iw*)ﬁl :

~
Epid —0in Lﬁ/ﬂ_l(QT)

p’ ¥
e

- (o)
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