Collective Motion Through Singular Limits

Charlotte Perrin, Ewelina Zatorska, Didier Bresch

Colloque Inter'Actions, 2014, Lyon

Laboratoire de Mathématiques Université de Savoie France

22 May 2014

- Models
- Singular limit
- 3 Existence results
- Perspectives

Classical Navier-Stokes equations

Incompressible NS equations

$$\begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla p - \nu \Delta u = 0 \\ \operatorname{div} u = 0 \end{cases}$$

Compressible NS equations without temperature

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0 \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \rho \\ -\mu \Delta u - (\lambda + \mu) \nabla \operatorname{div} u = 0 \end{cases}$$

with
$$p = p(\rho)$$

Generalization with non-constant viscosities

A Free Boundary Problem in fluid mechanics

$$\begin{cases} & \partial_t \rho + \operatorname{div}(\rho u) = 0 \\ & \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p_1 + \nabla p_2 \\ & -\mu \Delta u - (\lambda + \mu) \nabla (\operatorname{div} u) = 0 \end{cases}$$

with

$$\begin{cases} 0 \le \rho \le 1 \\ p_2 \ge 0 \\ p_1 = p_1(\rho) \\ (1 - \rho)p_2 = 0 \end{cases}$$

compressible/incompressible system

Remarks : $p_1 \equiv 0$ and $\mu \equiv \lambda \equiv 0$

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0 \\ \partial_t (\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p_2 = 0 \\ (1 - \rho) p_2 = 0 \end{cases}$$

- A : $0 \le \rho < 1$ \rightarrow pressureless Euler equations
- B : $\rho = 1 \rightarrow$ incompressible Euler equations

See F. Berthelin, F. Bouchut (2003–2012) : Pressureless model from sticky particules system.

Collective motions and congestion : A flock of sheep Picture from L. Navoret PhD Thesis

How to get the Free Boudary System from Comp. NS eq?

Collective motion system from singular PDEs

Idea: Play with singular pressure

Previous works by Lions and Masmoudi

Approximate system

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0 \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) - \mu \Delta u - (\lambda + \mu) \nabla \operatorname{div} u + \nabla \rho_{\gamma}(\rho) = 0 \end{cases}$$

where

$$p_{\gamma}(\rho) = a\rho^{\gamma}$$

with a > 0 a fixed constant and γ a parameter.

 $\bullet \ \gamma \to \infty \implies$

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0 \\ \partial_t (\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \pi - \mu \Delta u - (\lambda + \mu) \nabla (\operatorname{div} u) = 0 \\ 0 \le \rho \le 1 \\ \pi \ge 0 \\ (1 - \rho)\pi = 0 \end{cases}$$

Pressure term coming from collective motion

New approximate system

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0 \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) - \mu \Delta u - (\lambda + \mu) \nabla \operatorname{div} u \\ + \nabla \rho_{\varepsilon}(\rho) = 0 \end{cases}$$

where

$$p_{\varepsilon}(\rho) = \varepsilon \rho^{\gamma} H(\rho)$$
 when $0 \le \rho < 1$ and $+\infty$ otherwise

with
$$\lim_{s\to 1^-} H(s) = +\infty$$
.

 γ is fixed, $\varepsilon \to 0$: Collective motion model?

See P. Degond, J. Hua, L. Navoret (2013): formal derivation and numerical schemes

$$\rho_{\varepsilon} = \varepsilon \frac{\rho^{\gamma}}{(1-\rho)^{\gamma}}$$

Remark

- ullet we have $ho \leq 1$ thanks to the pressure term
 - → the pressure plays the role of a barrier

See B. Maury (2012)

- See also E.Feireisl, H.Petzeltovà, E.Rocca, G.Schimperna (2010)
 - → phase-field model for two-phase compressible fluids

Energy estimates

$$\Omega = (0, L)$$

• $p(\rho) = a\rho^{\gamma_n}$

$$\frac{d}{dt} \int_0^L \left(\frac{1}{2} \rho |u|^2 + \frac{a}{\gamma_n - 1} \rho^{\gamma_n} \right) dx + \int_0^L \mu |\partial_x u|^2 dx = 0$$

•
$$p(\rho) = \varepsilon \rho^{\gamma} H(\rho)$$
 with $H(s) = \frac{1}{(1-s)^{\beta}}$
$$\frac{d}{dt} \int_0^L \left(\frac{1}{2}\rho |u|^2 + \Pi(\rho)\right) dx + \int_0^L \mu |\partial_x u|^2 dx = 0$$
 where $\Pi(\rho) = \rho \int_0^\rho \frac{p(s)}{s^2} ds$.

$$ex: p = \varepsilon \frac{\rho^2}{(1-\rho)} \longrightarrow \Pi = \varepsilon \rho \log(1-\rho)$$

 \implies no a priori uniform bound on p

How to get extra information?

$$\longrightarrow p(\rho) \in L^1_t L^1_x$$
 uniformly

Sketch of proof

• we test the momentum eq by $\phi(t,x) = \psi(t) \int_0^x (\rho(t,s) - \bar{\rho}) ds$

$$\int_{0}^{T} \psi(t) \int_{0}^{L} p(\rho) \left(\rho - \int_{0}^{L} \rho \, dy\right) dx dt = \int_{0}^{T} \int_{0}^{L} \partial_{t} (\rho u) \phi dx dt$$
$$- \int_{0}^{T} \int_{0}^{L} \rho u^{2} \partial_{x} \phi dx dt + \mu \int_{0}^{T} \int_{0}^{L} \partial_{x} u \partial_{x} \phi dx dt$$

- the energy estimates allows to control the r.h.s
- we slip the l.h.s into two parts depending on the density

$$\implies p(\rho) \rightharpoonup \pi$$
 with π a positive measure.

$$\implies \rho p(\rho) \rightharpoonup \pi_1$$
 with π_1 a positive measure.

- Can we pass to the limit in the system?
- Can we recover the constraint $(\rho-1)\pi=0$?

Sketch of proof $ho=arepsilonrac{ ho^{\gamma}}{(1ho)^{eta}}$, 1d case

• using the strong convergence of the density

$$\rho\pi = \pi_1$$

ullet to characterize the limit π we write

$$\underbrace{\varepsilon \frac{(\rho)^{\gamma} \rho}{(1-\rho)^{\beta}}}_{\stackrel{\longrightarrow}{} \stackrel{\longrightarrow}{} \stackrel{\longrightarrow}{$$

$$p=arepsilonrac{
ho^{\gamma}}{(1-
ho)^{eta}}$$
, conclusion

the limit (ρ, u, π) satisfies

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0 & \text{in } (0,T) \times (0,L) \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x \pi - \mu \partial_x^2 u &= 0 & \text{in } \mathcal{D}'((0,T) \times (0,L)) \\ 0 &\leq \rho \leq 1 & \text{in } (0,T) \times (0,L) \\ \pi &\geq 0 & \text{in } \mathcal{M}_+((0,T) \times (0,L)) \\ (1-\rho)\pi &= 0 & \text{in } \mathcal{D}'((0,T) \times (0,L)) \end{aligned}$$

Existence results

Singular pressure

Existence of solutions, ε fixed

• let $\varepsilon, \mu, \lambda$ be fixed positive constants and let

$$(u^0, \rho^0) \in H_0^1(0, L) \times H^1(0, L)$$
 with $0 < \rho^0 < 1$.

Then there exists a regular solution $(u^{\varepsilon}, \rho^{\varepsilon})$ such that

$$\rho^{\varepsilon} \in L^{\infty}(0, T; H^{1}(0, L)) \cap H^{1}(0, T; L^{2}(0, L))$$

$$u^{\varepsilon} \in L^{2}(0, T; H_{0}^{1}(0, L)) \cap L^{\infty}(0, T; L^{2}(0, L))$$

uniformly with respect to ε and there exist constants c and $C(\varepsilon)$ s.t.

$$0 < c \le \rho^{\varepsilon} \le C(\varepsilon) < 1.$$

→ we pass to Lagrangian coordinates

Upper bound on the density

$$\begin{cases} \partial_{\tau} \rho - \rho^{2} \partial_{X} u = 0 \\ \partial_{\tau} u - \mu \partial_{X} (\rho \partial_{X} u) + \varepsilon \partial_{X} \rho_{2}(\rho) = 0 \end{cases}$$

 \Longrightarrow

$$\frac{d}{d\tau} \int_0^M \left(\frac{u^2}{2} + \varepsilon \int_0^\rho \frac{p_2(s)}{s^2} ds \right) dX + \mu \int_0^M \rho |\partial_X u|^2 dX = 0$$

$$\frac{d}{d\tau} \int_0^M \left(\frac{\mu}{2} \left(\frac{\partial_X \rho}{\rho} \right)^2 + \frac{u \partial_X \rho}{\rho} \right) dX + \varepsilon \int_0^M p_2'(\rho) \frac{(\partial_X \rho)^2}{\rho} dX = \int_0^M \rho (\partial_X u)^2 dX$$

$$\implies \rho < 1$$

Perspectives

- multi-d case
- degenerate viscosities

preuve $\pi_1 = \pi$

$$arepsilon rac{
ho^{\gamma}}{(1-
ho)^{eta-1}} \longrightarrow 0 ext{ in } L^{eta/eta-1}(Q_{\mathcal{T}})$$

•
$$\beta = 1$$

$$|\varepsilon \frac{\rho^{\gamma}}{(1-\rho)^{\beta-1}}| = \varepsilon \rho^{\gamma} \le \varepsilon$$

$$\begin{split} \int_{Q_{\tau}} \left(\frac{\rho^{\gamma}}{(1-\rho)^{\beta-1}} \right)^{\frac{\beta}{\beta-1}} & \leq & \varepsilon^{\frac{\beta}{\beta-1}} \int_{Q_{\tau}} \left(\frac{(\rho^{\gamma})^{\frac{\beta}{\beta-1}}}{(1-\rho)^{\beta-1}} \right)^{\frac{\beta}{\beta-1}} \\ & = & \varepsilon^{\frac{1}{\beta-1}} \varepsilon \int_{Q_{\tau}} \left(\frac{\rho^{\gamma}}{(1-\rho)^{\beta}} \right)^{\frac{\beta}{\beta-1}} \\ & \leq & C \varepsilon^{\frac{1}{\beta-1}} \end{split}$$